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The family of shear flows comprising the jet, wake, and the mixing layer are subjected 
to perturbations in an inviscid incompressible fluid. By modelling the basic mean flows 
as parallel with piecewise linear variations for the velocities, complete and general 
solutions to the linearized equations of motion can be obtained in closed form as 
functions of all space variables and time when posed as an initial-value problem. The 
results show that there is a continuous spectrum as well as the discrete spectrum that 
is more familiar in stability theory and therefore there can be both algebraic and 
exponential growth of disturbances in time. These bases make it feasible to consider 
control of such flows. To this end, the possibility of enhancing the disturbances in the 
mixing layer and delaying the onset in the jet and wake is investigated. It is found that 
growth of perturbations can be delayed to a considerable degree for the jet and the 
wake but, by comparison, cannot be enhanced in the mixing layer. By using moving 
coordinates, a method for demonstrating the predominant early and long time 
behaviour of disturbances in these flows is given for continuous velocity profiles. It is 
shown that the early time transients are always algebraic whereas the asymptotic limit 
is that of an exponential normal mode. Numerical treatment of the new governing 
equations confirm the conclusions reached by use of the piecewise linear basic models. 
Although not pursued here, feedback mechanisms designed for control of the flow 
could be devised using the results of this work. 

1. Introduction 
Classical hydrodynamic stability theory has been successful in demonstrating how 

any particular shear flow must be unstable. For the class of flows where the fluid can 
be taken as inviscid there is a variety of results from both theoretical and experimental 
investigations. Indeed, the corroboration between the two pursuits is quite strong and 
has led to a reasonable understanding of the problems. There are, however, still 
significant needs. The determination of whether or not a flow is stable or unstable has 
been ascertained by the use of normal mode or travelling wave analysis for the 
linearized equations of motion. This technique is tantamount to computing a discrete 
spectrum of eigenvalues. Unfortunately, even this approach has been limited in that the 
effort has concentrated on determining if there is at least one unstable eigenvalue. The 
remaining eigenvalues (presumably infinite in number), including all those that are 
stable, must be known in order to consider any initial-value problem. In addition, the 
continuous spectrum, if it exists, must also be included for any general specification. 
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The determination of an unstable eigenvalue only ignores transient dynamics in favour 
of the asymptotic state. In other words, the flow is unstable regardless of how 
perturbations are imparted. If one desires to understand how to influence any shear 
flow, it is clear that the origin and the transients must be examined. Traditional means 
of solution of the governing equations where a separable normal mode travelling wave 
is introduced is not a profitable means of accomplishing this task. The difficulties lie 
with the fact that the principal equation (Rayleigh equation) used in the inviscid 
problem is not self-adjoint and therefore does not allow classical Sturm-Liouville 
means for calculations. To include three-dimensional effects requires solving yet 
another equation (Squire mode equation) and it too is not of standard form. Including 
a viscous fluid in the investigation (requiring the Orr-Sommerfeld equation) could lead 
to a singular perturbation problem, making for still more complications. The question, 
then, is how to obtain a reasonable solution for a workable model that will permit a 
general treatment of initial values. 

The class of free shear flows that occur without the influence of solid boundaries can 
be analysed in an inviscid fluid because, unlike the boundary layer prototype, viscous 
effects tend to cause damping rather than instability, i.e. any eigenvalue is decreased in 
magnitude by viscosity. The inviscid fluid approximation allows the removal of one of 
the major complications cited above. In addition, it permits the analysis to be made 
with a parallel flow assumption. An introduction of separable solutions for all the 
dependent variables in the form of travelling waves usually follows. This procedure is 
fine so long as every eigenvalue and eigenfimction are known, particularly the ones that 
are damped since this information is crucial to the transient dynamics. The continuous 
spectrum remains omitted with this type of solution. 

An alternative approach to the initial-value problem is that due to Kelvin (1887) and 
later to Orr (1907a, b).  Ths  method involves a change of the independent variables 
from a Cartesian to a moving frame. As a result, in this frame, there is no critical layer 
that has so complicated normal mode calculations. The method can be used for any 
profile but is most amenable to ones that are piecewise linear. The modelling of the 
mean velocity in this manner in no way loses any of the important qualitative 
information and, it will be seen, all of the early and asymptotic temporal behaviour can 
be captured. The fact that a growing normal mode occurs for small values of the 
wavenumber (large scales when compared to the scale of the flow field) is also where 
the piecewise linear profile is most valid. Of course, this approximation is not without 
its negative aspects (only a finite number of normal modes are possible, for example) 
but, since the problems have also been done numerically when cast in terms of normal 
modes, any misinformation from this part of the solution can be eliminated by 
comparison. In short, the advantage gained outweighs the difficulties and this will be 
demonstrated. 

Work that has been done by direct numerical simulation of these flows using the full 
Navier-Stokes equations usually introduces the most amplified normal mode to 
initiate the dynamics. Experimentalists have used various devices to attempt to 
enhance or delay disturbances based on the normal mode frequencies. Neither of these 
types of studies was concerned with how any disturbances had their origins. In a 
somewhat general way, it is assumed that the standard linear theory provides these 
data. In the case of the mixing layer prototype, Bun & Criminale (1994) have shown 
that this reliance can be misleading. In fact, this work demonstrated that no growing 
normal mode is needed at all to achieve the well-known roll-up process that is observed 
in this flow. It was possible to do this because the origin and the transient temporal 
dynamics are known explicitly. The same procedure can be used for the jet and wake 
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family. The natural query for any case is whether or not this part of the flow can be 
manipulated in such a way as to enhance or delay perturbations as may be desired. This 
topic is the central issue of this paper. 

2. Basic governing equations 

U = U(y) ,  V = W = 0. Then, the linearized equations of motion can be written as 
The fluid is taken as inviscid and incompressible with the basic flow parallel, 

and 

au au aw -+-+- = 0, 
ax ay az 

au au d u  ap 
-+U-+---u+- = 0, 
at ax dv ax 

av a0 ap 
at ax ay 
-+u-+-=o, 

aw a w  ap 
at  ax aZ 
-+ u-+- = 0. 

(3) 

(4) 

On using the transformation of variables given by T = t ,  f = x- Ut, 7 = y ,  5 = z and 
the Fourier transformations defined with respect to 6 and 5 as 

aa -i(aii+ytir)+-+iaTU,,fi = 0, 
a7 

and 

aii -+ U,,a-iuy = 0, 3T 

afi ay 
-+-+iaTU,# = 0, 
aT 87 

atir 
--iyjj = 0, 
aT 

(7) 

(9) 

respectively, with U,, = dU/dq. 
The Squire transformation, written as 

aii+y@ = du”, (10) 
-yii+a@ = &$ (1 1) 

where d = (a2 + y2)lI2, combined with operations on (7)-(9) enables us to obtain the 
pair of equations (cf. Criminale & Drazin 1990) 

a 
-V26 = 0, 
aT 



286 W. 0. Criminale, T. L. Jackson and D. G.  Lasseigne 

__.___________-_-.-.. 

.________--___ .__---__---- 

Jet Wake Mixing layer 

FIGURE 1 .  Schematic of family of free shear flows. 

where 
a 2  a 

aq2 "7 
V2 = -+2iaTU --di2-a2T2Ui 

and sin g5 = y/&. It is clear that the solutions of (12) and (13) combined with continuity 
and the Squire transformation are equivalent to solving (6H9). Likewise, p can be 
determined from (9). In either case, solutions of the equations are subject to initial 
conditions and the restriction of boundedness as 7 + f 00. It should be noted that the 
fact that the mean velocity has been assumed as only a linear function of y has been 
explicitly incorporated into the derivation of (12), (13) and (14). 

The prototypical family of free shear flows is depicted in figure 1. As can be seen, the 
jet and wake can be combined to form one principal family while the mixing layer 
stands alone. In each case, the solutions of the governing equations must be solved in 
regions. Then, at the interfaces where the piecewise linear velocities join, the solutions 
are required to be matched. As pointed out by Criminale & Drazin (1990), the 
matching requires both v' and j to be continuous in an inviscid fluid. In terms of v', the 
pressure becomes av' 

+iaTU -+2iaU,v'. 
a 2 u '  - q j  = - 

a7 aT '1 i3T 
If the length scale, H, is used together with the time scale, cr, then the equations can 

be non-dimensionalized. Then, both (12) and (13) can be considered non-dimensional. 
By allowing that V2v' = V2U'IT_,, = &a, y ;  q), then the equation 

with 
J-m J-m 

must be solved in order to obtain the generic solutions for 17. On using the change of 

The general solution of (19) combined with (18) is 

where CP is any particular solution obtained by solving equation (16) for the given 
f i (a ,y;q) .  This solution process is repeated for each layer of the piecewise linear 
profile, and the undetermined functions of time in the homogeneous solution are used 
to impose continuity of v' and p' at the interfaces. 

The specific cases of the jet wake and the mixing layer can now be considered. 

6 = [A( T )  ezq + B( T) e-zq] e-hT(udg) 9 + q a ,  y ; 7, T), (20) 
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3. Jet wake 
The mean flow velocity, with 7 = y / H ,  is taken as 

7 > 1  
u,+q, 0 < 7 <  1 

v,-q, -1 < 7 < 0 

7<-1 ,  

U(7) = 

where, for the triangular jet profile, U, = 0, U, = 1, cr = - 1 ; for the wake profile, 
Uo = 1, U,= 1 -Q, c = Q with Q a measure of the wake deficit. On substituting the 
above mean flow into (20), we see that the general non-dimensional solution for either 
the jet or wake is given by 

A(T)  e-"'(T-l), 7 > 1  
(B( T )  e"'? + C( T )  e+) e-iaTt + v' 1,p(~,y;7,T) ,  0 < 7 < 1 

F( T )  e"?+f), 7<--1, 

(22) (D( T )  eea + E(T) e-'?) eiaT7 + C2, p(a, y ; 7, T) ,  - 1 < 7 < 0 
f i =  [ 

plus the appropriate solution for p' determined from (15). Here, we have taken the 
particular solution DIP to be non-zero inside the jet wake region ( f i p  = fil, for 0 < 7 < 1 
and 6, = fi2,p for - 1 < 7 < 0) and zero outside. The unknown functions of time 
A(T),  . . . , q T )  are determined by requiring continuity of v' and p' at the interfaces. On 
matching, the result is a linear ordinary differential system in time, namely 

X=-yR~x+- - f ,  ia 1 x(O)=O, 
201 2di 

where 

x = [B ElT, f= V1fif3IT, 
and (') = d( )/dT. Here, 

and 

Once B, D, and E have been determined, the other functions can be found by means 

A = (Be"'+Ce-e)ee-iuT+fi,,p(a,y; 1, T), (26) 

C = D + E - B +  fix, p ( ~ ,  7; 0, T )  -v'l,p(a, y ;  0, T), (27) 

F =  (De-"+Ee"')e-iuT+fiz,p(a,y; -1, T). (28) 

of (22): 
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We note here that the solution to (23) is independent of the particular profile under 
consideration; the choice of a jet or wake is only obvious when the solution is 
transformed back to physical space. 

The homogeneous soluion of (23) cf= 0) is the usual normal mode solution, with the 
eigenvalues determined from the matrix R. This solution will also dominate for large 
time even whenfis present because of the exponential behaviour. It can be seen that 
there is only a finite number of normal modes. This is due to the fact that the mean 
profile is approximated as piecewise linear. As the number of linear segments is 
increased so does the number of modes; of course, the continuous profile admits a 
finite number of normal modes and a continuum. Here, the time dependence is directly 
known because the differential equations have been solved either analytically or 
numerically and thus the solution contains all the modes, including the continuous 
spectrum if present. 

The essential points in treating an initial-value problem in flows of this type have 
been presented by Drazin & Reid (198 1). In summary, any arbitrary description at time 
T = 0 will be a function of x, y, z (or E, 7, 6 in the transformed system). On using the 
Fourier transforms, the dependence is then on the wavenumbers a, y and 7. The 
solutions of the perturbation problem indicates that there will be a sum of discrete 
eigenmodes and an integral of a continuous eigenspectrum that can be used to 
represent the prescribed initial function. The solutions obtained by use of the piecewise 
linear model provide all of this information explicitly. 

The qualitative behaviour of the discrete eigenmodes is the same as that known from 
numerical computations using a continuous U(y), particularly the fact that there is an 
unstable mode for the interval 0 < d < di,. The differences between the modelled and 
the continuous U(y)  are primarily (a)  the value of GC for the modelled profile is 
somewhat less than the neutral equivalent for the continuous U ( y ) ;  (b) the modelled 
U has neutral solutions for all Oi > d,  whereas no eigenvalues have been found using 
the continuous U for d > di, (cf. Betchov & Criminale 1967). The first point is not 
significant but the second restricts the validity to the range of small values of d .  But, 
even here, it is this region where the dynamics has salient interest. 

There is maximum exponential growth for a mode in the interval 0 < d < dc. The 
eigenfunction corresponding to this mode is symmetric in 7. These facts provide the 
clues needed to manipulate the initial designation. Enhancement requires a symmetric 
variation in 7 whereas delay suggests an asymmetric variation initially. At the same 
time it should be noted that, unless a feedback mechanism is added, exponential 
temporal growth of a symmetric variation cannot be prevented altogether but only 
delayed. 

3.1. Symmetric disturbances 
For symmetric initial conditions we solve the following equation to obtain the 
particular solution : 

(29) 
Prescribing V2V- at T = 0 is effectively prescribing vorticity. Moreover, symmetric (or 
asymmetric) V2fi will result in a symmetric (or asymmetric) initial 5. On using (29), 

V2fi = Qo[e’flo 7 + e-Vo 4. 

t p  = Q,[a( T )  eifloT + b( T )  e-iflo’], (30) 

(3 1) 
-1  - 1  

where a(T) = b(T)  = 
[Po + a( U,,/a) +d2’  [Po - a( U,/a) T]2+ d2 * 

Note that fi1, and fi2, in (22) can now be determined by using the conditions U,, = a 
f o r O < q < l  and U , = - a f o r O < q < l .  
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FIGURE 2. Jet/wake mean flow approximated by piecewise linear profile. Plot of ID1 versus time T for 
symmetric initial disturbance with = 0, Po = (2n - 1) x/2 and (a) a = 1.832744 (neutral mode), (b) 
a = 1.22 (maximum), and (c) u = 0.61 (subharmonic). 
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FIGURE 3. As figure 2 but for asymmetric initial disturbance with q5 = 0, Po = nx/2. 

The system (23) is now solved numerically using a fourth-order Runge-Kutta 
scheme. All calculations were computed in double precision. In each case reported here 
and in the following subsection, the magnitude of D was always larger than the 
magnitude of either B or E. For this reason only graphs of ID1 are given. In figure 2 we 
plot 101 as a function of time with q5 = 0, Po = (2n - 1) 7c/2 and for various values of a. 
This choice of Po ensures that the particular solution vanishes at 7 = & 1 and is taken 
as a convenience. The values of a correspond to the neutral mode, the maximum 
growth rate mode and its subharmonic from the normal mode analysis. As n is 
increased from 1 to 10, we see that the exponential growth is slightly delayed, 
suggesting that symmetric initial disturbances do not significantly alter the transient 
behaviour. 

3.2.  Asymmetric disturbances 
For asymmetric initial conditions we solve the equation for the particular solution 

- 1  1 
where a(T)  = b(T) = [Po + a( U,/a> q2 + 2' [Po - a( U,/a) TI2 + ?i2 * 

Note that C1, and C2, in (22) can now be determined by using the conditions U, = a 
f o r O < r <  1 and U , , = - a f o r O < v <  1. 

The system (23) is again solved numerically using a fourth-order Runge-Kutta 
scheme. In figure 3 we plot (Dl as a function of time with $ = 0, Po = nlr: and for various 
values of a. The choice of Po ensures that the particular solution vanishes at 7 = & 1. 
The values of a correspond to the neutral mode, the maximum growth rate mode and 
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its subharmonic from the normal mode analysis. Each sub-figure should be compared 
to the corresponding sub-figure for the symmetric initial disturbance and special 
attention should be paid to the scales of each graph. As n is increased from 1 to 10, we 
see that the exponential growth is significantly delayed, suggesting that asymmetric 
initial disturbances can alter the transient behaviour. The maxima obtained here for 
early time are due to the 'Orr or venetian blind effect' and arise because of the choice 
of initial conditions being periodic in 7. Mathematically, an inspection of the coefficient 
b(T) in (31) or (34) can be seen to be the origin both here and in the symmetric initial 
value. 

4. Mixing layer 
The mean flow velocity for the mixing layer is taken as 

1, 7 > 1  
7, -1 <7] < 1 
-1, y-C-1, 

(35) 

and we have set m = 1 for convenience. Substituting the above mean flow into (20), we 
see that the general non-dimensional solution is given by 

A(T) e-b(T-1), 7 > 1  
o'= (B(T)eb"+C(T)e-bT) e-'"'9+Cp(a,y;7, T), - 1 < 7 < 1 (36) I D(T) e6("+l), T < - L  

plus the appropriate solution for p' determined from (15). Here, we have taken the 
particular solution to be non-zero inside the mixing layer region and zero outside. As 
in the previous example, the unknown functions of time A( T), . . . , D( T) are determined 
by requiring continuity of ii and p' at the interfaces. On matching, the result is a linear 
ordinary differential system in time, namely 

where 

x = -:Rx+--f, ia 1 x(0) = 0, 
2a 2& (37) 

f ,  = k,( - I) - kip( - I)] 

a6 
a7 

and g,(q) = 2iacp(7) +iaTi,(7) +-(7). 

Once B and C have been calculated, the other functions can be found by means of the 
following relations : 

A = (BeE + ce-&) e-icrT + o',(a, y ; 1, T), (40) 
D = (Be-"+CeE)eiuT+o',(a,y; 1 ,  T). (41) 

The homogeneous solution of (37) is the usual normal mode solution, with the 
eigenvalues determined from the matrix R. This solution will also dominate for large 
time whenfis present. As in the previous example, we consider the two special cases 
of symmetric and asymmetric initial disturbances. The particular solution is of the 



Enhancing and delaying disturbances in free shear flows 29 1 

12 

a 
IBI 

4 

0 

N=l 5 K 40 80 120 

T T T 

FIGURE 4. Mixing layer approximated by piecewise linear profile. Plot of IBI versus time T for 
symmetric initial disturbance with 9 = O,po = (2n- l ) l r /2  and (a) a = 0.639232 (neutral mode), (b) 
a = 0.396 (maximum), and (c) a = 0.198 (subharmonic). 
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FIGURE 5. As figure 4 but for asymmetric initial disturbance with 0 = 0, Po = nn/2. 

same form as in the jet-wake case. The system is again solved numerically using a 
fourth-order Runge-Kutta scheme. In each case reported here, the magnitude of B was 
always larger than the magnitude of C. For this reason only graphs of [BI are given. 
For the symmetric case, the magnitude of B is plotted in figure 4 as a function of time 
with q5 = 0, Po = (2n - 1) n/2 and for various values of a. Likewise, for the asymmetric 
case, the magnitude of B is plotted in figure 5 as a function of time with g5 = 0, ,8, = nn 
and for various values of a. The values of a correspond to the neutral mode, the 
maximum growth rate mode and its subharmonic from the normal mode analysis. In 
both cases, as n is increased from 1 to 10, we see that the exponential growth is delayed, 
suggesting that high-wavenumber initial disturbances (whether they be symmetric or 
asymmetric) may delay the eventual roll-up. 

5. Continuous profile analysis 
As stated there is no problem in using the moving coordinate transformation when 

the basic profile is a continuous function of the transverse variable y .  As before, the 
transformation from the Cartesian to the moving frame is given by 

but now both the equations and the operator must be amended. The same two 
equations for the perturbation quantities can be obtained in exactly the same manner 
and they become 

-V2v'+i&cosq5U,,,v' = 0, 
aT 

T = t ,  [ = n - U ( y ) t ,  q = y ,  [=z, (42) 

(43) 
a 
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with the operator, V2, now defined as 
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(45) V2 = - + 2id cos $TU -- E2 - E2 cos2 $T2 Ut + i& cos $TU,,. 

It is clear that the problem is more complex than that of the constant-shear basic 
profile. Solutions are still subject to the initial and boundary conditions. 

Equation (43) could be numerically integrated and these results should be compatible 
with what has been predicted using the piecewise linear profiles. At least, qualitative 
agreement should be forthcoming. In lieu of actually doing the numerics here, an 
analytical procedure can be explored. The basis for the method is due to the fact 
that the major results for the dynamics of the perturbations of free shear layers 
occur for small values of the radial wavenumber, & (or a if the problem is taken 
as two-dimensional). Thus, a regular perturbation expansion can be made as 
v' = v',+dv', +d2v',+. . . . Substitution of this series into (43) generates the set of 
equations 

a 2  a 
'I a7 

"r3) aT a$ = -icosq5{2~(U7v',)+T- :T( 2U 9g ~ + U , , d o  )} (47) 

for the first two orders. The following observations can be made. First, the lowest- 
order equation (46) is independent of any influence from the mean velocity profile and 
can be solved in a straightforward manner. Then, the ii, solution will be time 
independent unless it is assumed that there is continuous or time-dependent driving in 
equation (46). 

On accepting the time-independent solution for v',, the O(d) equation can be reduced 
to 

and, immediately, 
a 2 i i  a 
371' 371 
-2 = - 2i cos $T- (U, 6,) 

where a2v'a,/a72 = 0 at T = 0. The full solution for v', is 

5, = b+Bq-Zicosq5Trm U,v',dy, 

(49) 

where V, and B are constants. But B = 0 by the boundary conditions and therefore 

It is clear from this series that only algebraic terms in Twill be generated regardless 
of the influence of the mean profile in the successive equations. Thus, the early period 
motion is purely algebraic. As time increases the series is no longer valid as can be seen 
from the operator (45). The implication is that a new time scale must be invoked in 
order to have a viable expansion. In fact, on allowing f = &T, then the large time 
behaviour can be evaluated. 
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FIGURE 6. Bicklet jet. (a) Plot of the maximum magnitudes of real (solid) and imaginary (dashed) 
parts of I/ as a function of time T for symmetric initial disturbance for # = 0, a = 1 and 8, = 1, (6) 
Plot of real (solid) and imaginary (dashed) parts of V as a function of 9 at T = 20 for # = 0 and 
Po = 1 .  

It can be readily seen that the operator will lose only the dia term in the expansion 
with the new time scale. Therefore, the new series for v' is v' = v',, + &'v', + d4G, + . . . and 
the lowest-order equation is 

(52) 
a -  

-V2do + i cos $BU,,,, v', = 0, 
aT 

where v2 = V 2 + 2 .  In effect, (52) is the full equation and it would seem that there is 
little to be gained by the small4 expansion. Interestingly enough, this is not the case 
and implications of the full equation can be found without actually resorting to the 
solution. 

By considering the transformation 

fi = v((.rl ne-if'cos+uCr) (53) 
the full equation can be rewritten as 
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FIGURE 7. As figure 6 but for asymmetric initial disturbance and at T = 168 in (b). 

Then, if (54) is expanded and Vis Laplace transformed to remove the time dependence, 
then 

(55) [s-iiacos$U(q)] [:'78 ;-ia2V -1 +icos$U,, 8= G(q), 

where P is the Laplace transform of V and G(7) is an initial value. This equation is 
another way of expressing the Rayleigh equation that is dominant in inviscid fluid 
dynamic stability theory. Consequently, a growing exponential solution can be 
expected to dominate asymptotically in time. 

A final remark should be made with regard to the use of the moving coordinate 
transformation. Heretofore, small-wavenumber expansions have been used to solve the 
Rayleigh (or Om-Sommerfeld) equation but a non-uniformity in the spatial variable 
y must be treated. Here, this is not a problem as has been shown throughout. Instead, 
it is time that must be scaled and this makes for an added facility in the investigation. 

5.1. Numerical solution 
In this subsection the numerical solution to the full equation (43) is presented for both 
the Bickley jet (U(7) = sech27) and the mixing layer (U(7) = tanhq). It is first 
convenient to introduce the transformation 

(56) fi = V('7, T )  e-idTCOS$U(?l) 9 
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FIGURE 8. Mixing layer with hyperbolic tangent profile. (a) Plot of the maximum magnitudes of real 
(solid) and imaginary (dashed) parts of V as a function of time T for symmetric initial disturbance 
for $ = 0, a = 0.396 and Po = 1 (b) Plot of real (solid) and imaginary (dashed) parts of Vas a function 
ofTat T=17 .6 for$=OandPo=1 .  

so that the full equation (43) can be rewritten as 

Note that q5 can be scaled out by an appropriate transformation in time. This equation 
is to be solved subject to appropriate initial conditions. Here, we take 

(58) 
for symmetric disturbances, or 

(59) 
for asymmetric disturbances, where Po is some wavenumber. The choices (58) 
and (59) could be made more general. For example, a wave packet would be of 
interest and therefore, at T = 0, V(a, y ; q, 0) = &(a, y) cos (Po 7) e-v' or V(a, y ;  7,O) = 
&(a, y )  sin (Po 7) e-7'. The amplitude &(a, y)  comes from the double Fourier transform 
of the real-space representation in terms of 6 and 5. 

The partial differential equation (57) was solved numerically by the method of lines. 
The spatial derivatives were centre differenced and the resulting system was integrated 

v (~ ,o )  = cos (P,, 7) e-7' 

v (~ ,o )  = sin (p0 7) e-7' 
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FIGURE 9. As figure 8 but for asymmetric initial disturbance and at T = 15.4 in (b). 

in time by a Runge-Kutta scheme. All calculations were done in double precision. The 
results were checked for convergence by increasing the number of mesh points and 
varying the region in 7 over which the differencing was done. 

Results for the Bickley jet are shown in figures 6 and 7. In part (a) of each figure the 
maximum of the magnitudes of the real and imaginary part of V (denoted by the solid 
and dashed curves, respectively) are plotted as a function of time. In part (b)  of each 
figure the real and imaginary parts of V (denoted by the solid and dashed curves, 
respectively) are plotted as a function of 7 at the last integrated time step shown in the 
corresponding top portion. The results shown in figure 6 correspond to the case of the 
symmetric initial disturbance (58), and the results shown in figure 7 correspond to 
asymmetric initial disturbances (59). In each case we have taken Po = 1, q5 = 0 and 
E = 1. Note that these results are qualitatively similar for those of the piecewise linear 
profiles shown in figures 2 and 3, respectively. We are therefore led to the conclusion 
that an asymmetric initial disturbance can significantly delay the eventual exponential 
growth, and that this feature is insensitive to either the actual jet profile or the form 
of the initial disturbance taken. Although not done here, similar conclusions can be 
expected for the wake. 

Results for the mixing layer are shown in figures 8-10. The nomenclature is the same 
as in the previous set of figures. The results shown in figure 8 correspond to the case 
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FIGURE 10. As figure 8 but for asymmetric disturbance and at T = 58 for 8, = lox in (b). 

of the symmetric initial disturbance (58), and the results shown in figure 9 correspond 
to asymmetric initial disturbances (59). In each case we have taken Po.= 1, $ = 0 and 
B = 0.396. For the Po x O(1) wavenumber values, the times at which exponential 
growth becomes evident are similar. Figure 10 shows results for the asymmetric initial 
disturbance but at a higher wavenumber, namely Po = lox. Note that the higher 
wavenumber delays somewhat the eventual exponential growth, thereby delaying the 
roll-up of the vortices. These results are qualitatively similar to those for the piecewise 
linear profile shown in figures 4 and 5, respectively. We therefore are led to the 
conclusions that symmetric or asymmetric initial disturbances with O( 1) wavenumbers 
do not significantly alter the eventual exponential growth while for larger wavenumbers 
the exponential growth is delayed, and that these features are insensitive to either the 
actual mixing layer profile or the form of the initial disturbance taken. 

6. Effect of three-dimensionality 
The perturbation problem is complete when all components of the fluctuation 

velocity and the pressure are known. As noted, by using the Squire mode equation (1 3) 
for G together with the dominant equation (12) for 6, this task is accomplished when 
the solutions of these two equations are obtained. In this way, not only can all 



298 W. 0. Criminale, T. L. Jackson and D .  G .  Lasseigne 

disturbance quantities be derived from these two variables, but the effects of obliquity 
in the field are ascertained. It is not sufficient to use the Squire's theorem from stability 
analysis since this theorem is only valid for separable normal modes. The presence of 
the continuous spectrum in the initial-value calculations requires further scrutiny. 

Some effects due to the Squire theorem are, of course, present in the representation. 
This can be seen directly by examining the equation for 6. Except for the angle 
4 = 4 2 ,  the implications of obliquity can be inferred. Note that, in the equation for 
B, if T is replaced by the new time T' = Tcos 9, then q5 no longer appears. Thus, for 
any angle where 0 < q5 < x/2, the temporal behaviour of B mirrors that of q5 = 0 (y  = 0) 
except that it responds more slowly and with a decreased amplitude, depending on the 
value of cos 4. The role of the other velocity components u', 6 j  (or zi, fi) must, however, 
be viewed with some caution since these quantities retain an explicit dependence on 4. 

Unlike the governing equation for B, the one for fi cannot suppress the angle 4. On 
the other hand, this equation can be integrated at once to give 

I? = W,(v) + sin #U,, v'(r], T') d T ,  IoT 
where Wo(r) = G(r],O). In general it can be concluded that any exponential dependence 
on T from v' will remain exponential for fi whereas algebraic dependence on T will 
result in a raising of the power of T. 

When q5 = n/2, then it can be shown that B no longer is a function of T (cf. Ellingsen 
& Palm 1975) and can be written as v' = fio(v). The solution for G for this case is simply 

fi = w,(r]) + TU,, u'o(r]), (61) 

On returning to the expressions for the Squire transformation (10) and (ll),  
Indicating that only a linear algebraic variation is possible. 

inverting and using continuity for zi, then 

1 1 aa 
6 j  = -isin# =-+icosq5TU7B +cos&T 

[a aT 

is found for the velocity components that are in the plane perpendicular to 3. The fact 
that the solutions for v' are proportional to the factor e-laTU as given by (56) reduces 
the above relations to 

and 

The extreme limits of 9 = 0 and q5 = 4 2  contain interesting information. First, for 
4 = 0, 

6 j  = fi = W(r]), (67) 
and the temporal behaviour is effectively the same as that determined for B in that only 
the phase variation is involved and not the amplitude. 
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When q5 = 1112, the limits are 

u = - w = -  - ( W r )  + T q  fio(rN9 (68) 

Here, the results are quite different, namely (a) only a simple algebraic variation is 
present and that is only for one of the velocity components; (b) the rate for the linear 
increase in ii depends upon the location in y since the slope for the Tdependence is the 
function fio(7). As has been noted by others, this kind of behaviour augurs formation 
of streaks and can be expected to be quite predominant at the locations where fio(v) has 
its largest values. 

The overall effect of an arbitrary disturbance will depend more realistically on a 
variety as well as many wavenumbers. The infinite wave train used in the assumption 
that the vorticity was periodic in x and z used here is but a simplistic limit of more 
rational distributions, such as finite wave packets, for example. Nevertheless, the 
dynamics as outlined will control the subsequent development. 

7. Conclusions 
Free shear flows in an incompressible inviscid fluid, consisting of the prototypical jet, 

wake, and the mixing layer, have been investigated subject to the influence of small 
perturbations. Instead of using the techniques of classical stability analysis for this 
purpose, the approach has both posed and solved the complete initial-value problem. 
Consequently, the full range of the dynamics, including the early transient and the 
asymptotic fate of any disturbance becomes known. In turn, this information provides 
a basis by which the flow can be manipulated and the possibility of enhancement or 
delay of the perturbation field can be considered. 

The initial-value problem has been considered heretofore but not generally requiring 
full details. The principal reason for this lack is the mathematics; the physical problem 
is well posed. Specifically: (a) the governing equations are not of the self-adjoint variety 
and (b) both a discrete and a continuous spectrum of eigenvalues must be known in 
order to make any arbitrary initial prescription. Otherwise an expansion would be 
severely limited. Thus, classical normal mode solutions are not useful here since only 
the discrete spectrum results. Use of Laplace transforms (cf. Gustavsson 1979) will, in 
principle, enable this task to be accomplished but the necessary inversions in order to 
find the temporal behaviour are formidable. 

This work has as its starting premise the use of moving coordinates. Then, by 
knowing that classical theory has shown that there are exponentially growing solutions 
(and therefore unstable) for small values of the wavenumbers, a modelled mean flow is 
taken by using piecewise linear variations for the velocity together with an expansion 
scheme using continuous profiles. The results indicate that the early time behaviour is 
always algebraic (and due to the continuous spectrum) and the asymptotic fate follows 
that due to an exponentially growing normal mode (discrete spectrum). Closed form 
solutions can be obtained as functions of all space variables and time. Effects due to 
three-dimensionality can also be addressed. 

The moving coordinate transformation not only demonstrates the type of variation 
for both early and long times but has the additional benefits that (a) solutions can be 
found that do not have spatial non-uniformity, and (b) there are no critical layers. 
Instead, it becomes a two-time problem. The results of the calculations indicate that 
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perturbations in the jet-wake family can be delayed to a considerable degree but not 
altogether eliminated without a feedback mechanism. At the same time, any delay in 
the mixing layer is modest indeed. At the other extreme, trying to enhance the mixing 
layer dynamics is likewise futile unless one uses perturbations of finite amplitude. The 
explanation seems to rest with the basic flows per se. The jet wake can be visualized as 
a pair of counter-rotating vortices, one above and one below the centreline with no 
vertical velocity on the centreline. A perturbation velocity in this direction that is non- 
zero at this location (symmetric u) tends to destroy this configuration as time goes on 
and the two vortices merge downstream to form one. Naturally, an asymmetric u has 
an opposite effect and the state with two vortices is prolonged. The mixing layer picture 
is that of only one vortex and therefore has a non-zero vertical velocity at the centreline 
at the outset. For this reason, an asymmetric u is not at all influential and one that is 
symmetric can only enhance the process if it is of large enough amplitude and at the 
correct frequency corresponding to unstable modes. 

Finally, direct numerical integration of the partial differential equation derived by 
use of the moving coordinates was done and it was demonstrated that all of the 
predictions made by the piecewise linear basic profiles are qualitatively correct. It is 
suggested that the use of this novel equation may well benefit exploration of other 
shear flows particularly when attention is directed towards initial value problems. 
Moreover, it is this equation that can be the basis when contemplating flow control or 
other salient mechanisms such as receptivity. 

This work was supported by the National Aeronautics and Space Administration 
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Computer Applications in Science and Engineering (ICASE), NASA Langley 
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